These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Development of an Impedimetric Aptasensor for Label Free Detection of Patulin in Apple Juice.
    Author: Khan R, Ben Aissa S, Sherazi TA, Catanante G, Hayat A, Marty JL.
    Journal: Molecules; 2019 Mar 13; 24(6):. PubMed ID: 30871278.
    Abstract:
    In the present work, an aptasensing platform was developed for the detection of a carcinogenic mycotoxin termed patulin (PAT) using a label-free approach. The detection was mainly based on a specific interaction of an aptamer immobilized on carbon-based electrode. A long linear spacer of carboxy-amine polyethylene glycol chain (PEG) was chemically grafted on screen-printed carbon electrodes (SPCEs) via diazonium salt in the aptasensor design. The NH₂-modified aptamer was then attached covalently to carboxylic acid groups of previously immobilized bifunctional PEG to build a diblock macromolecule. The immobilized diblocked molecules resulted in the formation of long tunnels on a carbon interface, while the aptamer was assumed as the gate of these tunnels. Upon target analyte binding, the gates were assumed to be closed due to conformational changes in the structure of the aptamer, increasing the resistance to the charge transfer. This increase in resistance was measured by electrochemical impedance spectroscopy, the main analytical technique for the quantitative detection of PAT. Encouragingly, a good linear range between 1 and 25 ng was obtained. The limit of detection and limit of quantification was 2.8 ng L-1 and 4.0 ng L-1, respectively. Selectivity of the aptasensor was confirmed with mycotoxins commonly occurring in food. The developed apta-assay was also applied to a real sample, i.e., fresh apple juice spiked with PAT, and toxin recovery up to 99% was observed. The results obtained validated the suitability and selectivity of the developed apta-assay for the identification and quantification of PAT in real food samples.
    [Abstract] [Full Text] [Related] [New Search]