These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanically robust high flux graphene oxide - nanocellulose membranes for dye removal from water.
    Author: Liu P, Zhu C, Mathew AP.
    Journal: J Hazard Mater; 2019 Jun 05; 371():484-493. PubMed ID: 30875575.
    Abstract:
    Ultrathin graphene oxide (GO) layer was fabricated on cellulose nanofiber (CNF) membrane to achieve robust crosslinker free layered membrane with synergistic water flux and separation performance. Unlike pristine cellulosic or GO membranes, GO-CNF hybrid membranes exhibited significantly improved mechanical stability in both dry and wet states. All membranes showed negative surface zeta potential. GO: CNF membrane (1:100) exhibited significantly high water flux (18,123 ± 574 Lm-2 h-1 bar-1); higher than that of CNF membrane or the hydrophilic commercial reference membrane with comparable pore structure (Nylon 66, 0.2 μm). We hypothyse that a unique surface structure of "standing inserted GO nanosheets" observed at low concentrations of GO contributes enormously to its ultrafast water permeability through creation of numerous water transport nanochannels. The aniosptropic layered membranes exhibited >90% rejection of positively and negatively charged dyes through a combination of electrostatic interaction, hydrophobic interactions and molecular size exclusion. Construction of an ultrathin GO layer on CNF offers a unique and efficient way to prepare highly functional, economical and scalable water purification membranes having significant advantage with respect to flux, mechanical stability and rejection of dyes compared to isotropic membrane with GO nanosheets randomly dispersed in the cellulose nanofibrous network.
    [Abstract] [Full Text] [Related] [New Search]