These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High-efficiency electrochemical degradation of antiviral drug abacavir using a penetration flux porous Ti/SnO2-Sb anode. Author: Zhou C, Wang Y, Chen J, Xu L, Huang H, Niu J. Journal: Chemosphere; 2019 Jun; 225():304-310. PubMed ID: 30877924. Abstract: Electrochemical degradation of antiviral drug abacavir was investigated by using a penetration flux porous Ti/SnO2-Sb anode prepared by sol-gel method. The effects of applied current density, initial pH, and inorganic anions on the degradation kinetics were systematically studied. Degradation efficiency more than 97% was performed in only 10 min at a current density of 0.2 mA cm-2. The corresponding degradation rate constant and the lowest electrical energy per order were calculated to be 0.36 min-1 and 6.5 mWh L-1, respectively. Extending the reaction duration to 5 h, 53.3% of TOC removal was observed. The results indicated that effective degradation of abacavir appeared in the penetration flux porous Ti/SnO2-Sb anode with a very low energy consumption. Furthermore, the electrochemical intermediate products and the reaction site during abacavir degradation were detected and recognized. The quantitative structure-activity relationship model revealed that the potential risks of abacavir to the aquatic organism, such as fish, greatly decreased after flowing through the penetration flux porous Ti/SnO2-Sb anode.[Abstract] [Full Text] [Related] [New Search]