These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mitochondrial membrane fatty acid composition in the marmoset monkey following dietary lipid supplementation. Author: McMurchie EJ, Gibson RA, Charnock JS, McIntosh GH. Journal: Lipids; 1986 May; 21(5):315-23. PubMed ID: 3088352. Abstract: Diets supplemented with high levels of saturated fatty acids derived from sheep kidney (perirenal) fat or unsaturated fatty acids derived from sunflowerseed oil were fed to marmoset monkeys for 22 wk. The effect of such diets on plasma, red blood cell phospholipids, and liver, heart, kidney and brain mitochondrial phospholipid fatty acids was determined. Despite large differences in the level and type of lipid present in the experimental diets, there was little effect on the proportion of saturated to unsaturated fatty acids in the phospholipids of the membranes examined. The diets did, however, alter the proportion of the various classes of polyunsaturated fatty acids in the membrane phospholipids, with the sunflowerseed oil diet elevating and the sheep kidney fat diet reducing the n-6/n-3 unsaturated fatty acid ratio, relative to a low (mixed fat) reference diet. This change occurred in all membranes except brain, in which only a small response to altered dietary lipid intake was observed. Elevation of dietary linoleic acid led to an increase in membrane linoleic acid and a marked decrease in membrane arachidonic acid, such that the membranes from animals fed the sunflowerseed oil diet exhibited the lowest proportion of arachidonic acid. In this latter respect, the response of the marmoset monkey to dietary lipid supplementation differs markedly from the rat. Our inability to alter significantly membrane lipid saturation/unsaturation supports the notion that a homeostatic mechanism is in some way responsible for buffering membranes from the effects of significant changes in the nature of the dietary lipid intake.[Abstract] [Full Text] [Related] [New Search]