These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Atmospheric Chemistry of Enols: Vinyl Alcohol + OH + O2 Reaction Revisited.
    Author: Lei X, Wang W, Cai J, Wang C, Liu F, Wang W.
    Journal: J Phys Chem A; 2019 Apr 11; 123(14):3205-3213. PubMed ID: 30888818.
    Abstract:
    The OH-initiated oxidation of vinyl alcohol (VA) produced by phototautomerization of acetaldehyde is thought to be a source of formic acid (FA) in the atmosphere. A recent theoretical study predicted that the VA + OH + O2 reaction 1 proceeds by OH addition at α-C (66%) and β-C (33%) of VA and that FA is a main product of reaction 1. However, the metastable reactant ( anti-VA, ∼18% at 298 K, 1.42 kcal mol-1 higher than syn in energy) used in that study inspired us to reinvestigate reaction 1. Using the state-of-the-art quantum-chemical and kinetic calculations, we first found that a conformer of VA has a significant influence on the rate coefficient and branching ratio of reaction 1. Upon derivation, it is found that ∼84% of reaction 1 takes place through the β-C-addition channel and ∼16% of reaction 1 happens by the α-C-addition channel. The calculated total initial rate coefficient at 298 K is 1.48 × 10-11 cm3 molecule-1 s-1, which is in reasonable agreement with the experimental values of similar systems (vinyl ethers + OH reactions). The predicted main products of reaction 1 are glycolaldehyde and the HO2 radical, whereas FA is just a byproduct.
    [Abstract] [Full Text] [Related] [New Search]