These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Potential of an electrospun composite scaffold of poly (3-hydroxybutyrate)-chitosan/alumina nanowires in bone tissue engineering applications. Author: Toloue EB, Karbasi S, Salehi H, Rafienia M. Journal: Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():1075-1091. PubMed ID: 30889640. Abstract: The choice of material types for tissue engineering scaffolds and the design of methods are contributive in yielding the proper result. In this study, 1-5% wt. Alumina nanowires are added to (Polyhydroxybutyrate-Chitosan) PHB-CTS alloy solution, and the scaffolds are prepared by electrospinning method. The fiber diameters, porosity percentages and uniform distribution of Alumina nanowires are assessed by SEM, EDS and TEM. The surface roughness of the fibers is confirmed by FESEM and AFM. The crystallinity of nanofibers is calculated by DSC and verified by FTIR. The tensile strength of the PHB-CTS scaffold increase up to >10 fold in presence of 3% wt. Alumina. Formation of calcium phosphate sediments only on the surface of Alumina containing scaffolds after 7 and 28 days of immersion in SBF is observed by SEM, and verified by XRD analysis. Proliferation and viability of MG-63 cells and alkaline phosphatase secretion are significantly higher on scaffolds containing Alumina than that of the PHB or PHB-CTS. The appropriate properties of Alumina which affected in cell behavior, hydrophilicity enhancement, bioactivity and mechanical properties make it contribution agent in bone tissue engineering.[Abstract] [Full Text] [Related] [New Search]