These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biocompatibility of new low-cost (α + β)-type Ti-Mo-Fe alloys for long-term implantation. Author: Abdelrhman Y, Gepreel MA, Kobayashi S, Okano S, Okamoto T. Journal: Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():552-562. PubMed ID: 30889729. Abstract: In this work, two new α + β titanium alloys with low contents of ubiquitous and low-cost alloying elements (i.e., Mo and Fe) were designed on the basis of the electronic parameters and molybdenum equivalent approaches. The designed Ti - 2Mo - 0.5Fe at. % (TMF6) and Ti - 3Mo - 0.5Fe at. % (TMF8) alloys were produced using arc melting process for studying their mechanical, electrochemical and cytotoxicity compatibilities and comparing these compatibilities to those of Ti-6Al-4V ELI alloy. The cost of the used raw materials for producing the TMF6 and TMF8 alloys are almost 1/6 of those for producing the Ti-6Al-4V ELI alloy. The hardness of the two alloys are higher than that of the Ti-6Al-4V ELI alloy, while their Young's moduli (in the range of 85-82 GPa) are lower than that of the Ti-6Al-4V ELI alloy (110 GPa). Increasing the Mo equivalent from 6 (in TMF6 alloy) to 8 (in TMF8 alloy) led to an increase in the plastic strain percent from 4% to 17%, respectively, and a decrease in the ultimate tensile strength from 949 MPa to 800 MPa, respectively. The microstructure of TMF6 alloy consists of α'/α″ phases, while TMF8 alloy substantially consists of α″ phase. The corrosion current densities and the film resistances of the new alloys are in the range of 0.70-1.07 nA/cm2 and on the order of 105 Ω·cm2, respectively. These values are more compatible with biomedical applications than those measured for the Ti-6Al-4V ELI alloy. Furthermore, the cell viabilities of the TMF6 and TMF8 alloys indicate their improved compatibility compared to that of the Ti-6Al-4V ELI alloy. The CCK-8 (Cell Counting Kit-8) assay was conducted to investigate the cytotoxicity, proliferation, and shape index of the cells of the candidate alloys. Overall, the measured compatibility of the new V-free low-cost alloys, particularly TMF8, makes them promising candidates for replacing the Ti-6Al-4V ELI alloy in biomedical applications.[Abstract] [Full Text] [Related] [New Search]