These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genetic and physiological characterization of new Escherichia coli mutants impaired in hydrogenase activity.
    Author: Wu LF, Mandrand-Berthelot MA.
    Journal: Biochimie; 1986 Jan; 68(1):167-79. PubMed ID: 3089308.
    Abstract:
    The Mu dl (ApR lac) bacteriophage was used to generate mutants of Escherichia coli which were defective in formate hydrogenlyase. Three mutants were chosen for further analysis: they lacked hydrogenase (hydrogen: benzyl viologen oxidoreductase) activity, but produced normal levels of fumarate reductase activity and two- to three-fold reduced levels of benzyl viologen (BV)-dependent formate dehydrogenase activity. Two of them (hydC) were shown to contain about 4-fold reduced amounts of formate hydrogenlyase and fumarate-dependent H2 uptake activities. The third one (hydD) was totally devoid of both activities. Their insertion sites were located at 77 min on the E. coli map. Subdivision of these mutants into two classes was subsequently based on the restoration capacity of hydrogenase activity with high concentration of nickel in the growth media. Addition of 500 microM NiCl2 led to a complete recovery of hydrogenase activity, and to the concomitant restoration of normal BV-linked formate dehydrogenase, formate hydrogenlyase and fumarate-dependent H2 uptake activities in the hydC mutants. The hydD mutant was insensitive to the effect of nickel. Expression of the lac operon in hydC and hydD mutants was induced by anaerobiosis. It was not increased by the addition of formate under anaerobic conditions. The presence of nitrate resulted in slightly reduced beta-galactosidase activities in the hydC mutants, whereas those found in the hydD mutant reached only one third of the level obtained in its absence. Fumarate had no effect on both classes. Moreover, in contrast to the hydD locus, the hydC::Mu dl fusions were found to be dependent upon the positive control exerted by the nirR gene product and were totally repressed by an excess of nickel. In addition, the low levels of overall hydrogenase-dependent activities found in a nirR strain were also relieved by the presence of nickel. Our results strongly suggest that the pleiotropic regulatory gene nirR is essential for the expression of a gene (hydC) involved in either transport or processing of nickel in the cell, whose alteration leads to a loss of hydrogenase activity.
    [Abstract] [Full Text] [Related] [New Search]