These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sulfate radical-mediated degradation of phenol and methylene blue by manganese oxide octahedral molecular sieve (OMS-2) activation of peroxymonosulfate. Author: Wei J, Li X, Yang Q, Wu Y, Huang X, Tao Z, Xu Q, Zhu X, Wang D. Journal: Environ Sci Pollut Res Int; 2019 May; 26(13):12963-12974. PubMed ID: 30895542. Abstract: Activation of peroxymonosulfate (PMS) has been concentrated on degrading refractory organic pollutants owing to the generation of sulfate radical ([Formula: see text]) with high standard redox potential. In this study, manganese oxide octahedral molecular sieve (OMS-2) with cryptomelane type was synthesized by a new hydrothermal method to activate PMS for the degradation of phenol and methylene blue (MB) in water. The as-prepared composites were fully characterized, and the effects of PMS dosage, OMS-2 dosage, initial pollutant concentration, pH, and chloride on the degradation of phenol were elaborately investigated. Moreover, the phenol degradation was evaluated through the variations of total organic carbon (TOC) and three-dimensional excitation emission matrix (3D-EEM), and reaction intermediates were also investigated. Both electron spin resonance (ESR) spectra and comparative experiments suggested [Formula: see text] and hydroxyl radical (HO•) took part in the phenol degradation and [Formula: see text] was more significant than HO•. The fine degradation efficiency of phenol in different water source, as well as the stability after continuous use, indicated the possible application of PMS/OMS-2 in real wastewater treatment.[Abstract] [Full Text] [Related] [New Search]