These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Plasma catalytic oxidation of toluene over double perovskite-type oxide via packed-bed DBD.
    Author: Pan KL, Chang MB.
    Journal: Environ Sci Pollut Res Int; 2019 May; 26(13):12948-12962. PubMed ID: 30895547.
    Abstract:
    Various perovskite-type catalysts including La2CoMnO6, LaCoO3, and LaMnO3 are first evaluated for the activities toward C7H8 removal. Experimental results indicate that double-type La2CoMnO6 shows better activity if compared with single perovskites due to high lattice oxygen content and good reducibility. Subsequently, perovskite catalysts are combined with plasma (NTP) to form in-plasma catalysis (IPC) and post-plasma catalysis (PPC) systems. The results indicate that IPC systems have better higher performance than that of NTP-alone and PPC. Especially, high C7H8 conversion (100%) and mineralization efficiency (96.8%) can be achieved with the applied voltage of 18 kV and temperature of 120 °C when La2CoMnO6 is integrated with NTP to form IPC system. Also, it owns the highest energy efficiency (0.14 g/kWh). It is concluded that IPC performance for C7H8 removal is closely related with the properties of catalyst surface. In addition, the kinetics of IPC systems are investigated by a simplified model, and the result indicates that IPC with La2CoMnO6 as catalyst has a higher overall energy constant. This study reveals that double-type La2CoMnO6 is of higher activity than single perovskites for C7H8 removal, and demonstrates that double-type La2CoMnO6 is of high potential to form plasma catalysis system for VOCs removal.
    [Abstract] [Full Text] [Related] [New Search]