These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Posture-related stiffness mapping of paraspinal muscles. Author: Creze M, Bedretdinova D, Soubeyrand M, Rocher L, Gennisson JL, Gagey O, Maître X, Bellin MF. Journal: J Anat; 2019 Jun; 234(6):787-799. PubMed ID: 30901090. Abstract: The paraspinal compartment acts as a bone-muscle composite beam of the spine. The elastic properties of the paraspinal muscles play a critical role in spine stabilization. These properties depend on the subjects' posture, and they may be drastically altered by low back pain. Supersonic shear wave elastography can be used to provide quantitative stiffness maps (elastograms), which characterize the elastic properties of the probed tissue. The aim of this study was to challenge shear wave elastography sensitivity to postural stiffness changes in healthy paraspinal muscles. The stiffness of the main paraspinal muscles (longissimus, iliocostalis, multifidus) was measured by shear wave elastography at the lumbosacral level (L3 and S1) for six static postures performed by volunteers. Passive postures (rest, passive flexion, passive extension) were performed in a first shear wave elastography session, and active postures (upright, bending forward, bending backward) with rest posture for reference were performed in a second session. Measurements were repeated three times for each posture. Sixteen healthy young adults were enrolled in the study. Non-parametric paired tests, multiple analyses of covariance, and intra-class correlations were implemented for analysis. Shear wave elastography showed good to excellent reliability, except in the multifidus at S1, during bending forward, and in the multifidus at L3, during bending backward. Yet, during bending forward, only poor quality was recorded for nine volunteers in the longissimus. Significant intra- and inter-muscular changes were observed with posture. Stiffness significantly increased for the upright position and bending forward with respect to the reference values recorded in passive postures. In conclusion, shear wave elastography allows reliable assessment of the stiffness of the paraspinal muscles except in the multifidus at S1 and longissimus, during bending forward, and in the multifidus at L3, during bending backward. It reveals a different biomechanical behaviour for the multifidus, the longissimus, and the iliocostalis.[Abstract] [Full Text] [Related] [New Search]