These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Does vitamin fortification affect light oxidation in fluid skim milk?
    Author: Schiano AN, Jo Y, Barbano DM, Drake MA.
    Journal: J Dairy Sci; 2019 Jun; 102(6):4877-4890. PubMed ID: 30904314.
    Abstract:
    Off-flavors in milk related to light oxidation form due to photoxidation of native riboflavin and tetrapyrroles, resulting in an array of lipid oxidation compounds. Recent work has established that fortification with water-dispersible vitamin A can result in off-flavors in fluid skim milk caused by vitamin A degradation products in the vitamin premix. The objective of this study was to determine the role of vitamin fortification on light oxidation of high temperature, short time pasteurized fluid skim milk. First, the aroma profiles and aroma-active volatile compounds in light-exposed vitamin premixes were determined by exposing the premixes to fluorescent (FL) or light-emitting diode (LED) light at 2,000 lx at 4°C for 0, 2, 4, 8, or 24 h. A trained panel (n = 6) documented aroma profiles of each vitamin premix at each time point. Headspace solid-phase microextraction followed by gas chromatography-olfactometry and gas chromatography-mass spectrometry (GC-MS) were performed to characterize aroma-active compounds in light-exposed vitamin premixes. In the second experiment, commercial vitamin premixes (vitamin A and vitamin D in oil and water matrices) were used to fortify skim milk (vitamin A: 3,000 IU/946 mL; vitamin D: 600 IU/946 mL). Skim milk was pasteurized, homogenized, and packaged in 946-mL high-density polyethylene jugs. Milks were exposed to FL or LED light at 2,000 lx at 4°C for 4, 12, 24, or 48 h. Controls with and without vitamins and light shielding were included. Riboflavin and vitamin A and D degradation were quantified via ultra-high-performance liquid chromatography. A trained panel (n = 8) documented sensory profiles of milks at each time point. Lipid oxidation volatile compounds were quantified via solid-phase microextraction with GC-MS. Vitamin degradation volatile compounds were quantified via solvent-assisted sorptive stir bar extraction with GC-MS. Riboflavin, vitamin A, and vitamin D degradation were consistent with that reported in previous studies. We found no effect of vitamin fortification on development of typical light oxidation-related off-flavors (cardboard and mushroom) or lipid oxidation-related volatiles (hexanal and heptanal). A perfumey/floral flavor was documented in the oil-based vitamin A-fortified milk, suggesting that light exposure affected the off-flavors contributed by water- versus oil-based vitamin fortification. These results show no evidence that vitamin fortification at current levels provides any protection against light oxidation-related off-flavors in fluid milk.
    [Abstract] [Full Text] [Related] [New Search]