These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Label-free proteomic analysis of silkworm midgut infected by Bombyx mori nuclear polyhedrosis virus. Author: Zhang Y, Xia D, Zhao Q, Zhang G, Zhang Y, Qiu Z, Shen D, Lu C. Journal: J Proteomics; 2019 May 30; 200():40-50. PubMed ID: 30904731. Abstract: Bombyx mori nuclear polyhedrosis virus (BmNPV) is the most damaging virus for the production of silkworm cocoons. Antivirus research continues to be an important aspect of the silkworm industry. Two-dimensional electrophoresis and mass spectrometry have been applied for analyzing the midgut proteome of BmNPV-infected silkworms. In recent years, the isobaric tags for relative and absolute quantitation (iTRAQ) method has frequently been used when studying interaction between BmNPV and Bombyx mori, and useful information has been obtained. In this study, midgut proteins of BmNPV-infected silkworms were extracted from silkworm variety NIL·LVR with anti-BmNPV activity at 48 h, and proteome analysis was carried out using the label-free method. 2196 proteins were identified. Among them, there were 85 differentially expressed proteins, 45 upregulated proteins (immune-activated proteins), 28 downregulated proteins, and six proteins were specific for the BmNPV group and another six specific for control group. Many of the immune-activated proteins have been reported to have innate immune functions, and the downregulated proteins are involved in apoptosis or abnormal cell viability. In conclusion, this study provides evidence for host defense against BmNPV infection by both innate immunity and apoptosis, revealing the potential function of the midgut after oral infection of BmNPV in Bombyx mori. SIGNIFICANCE: Bombyx mori nuclear polyhedrosis virus (BmNPV) has a great impact on the sericulture industry. However, the mechanism of resistance to BmNPV has not been fully elucidated. The silkworm midgut is not only the major organ for food digestion and nutrient absorption but also an immune organ serving as the first line of defense against microbial invasion and proliferation. Here we combined label-free quantitative proteomic, bioinformatics, quantitative real-time PCR and SDS-PAGE analyses and found that BmNPV invasion causes complex protein alterations in the larval midgut of NIL·LVR with anti-BmNPV activity. The results showed that many upregulated differentially expressed proteins have been reported to have innate immune functions and the downregulation proteins are involved in apoptosis or abnormal cell viability. These findings provide evidence for host defense against BmNPV infection by both innate immunity and apoptosis, and reveals the potential function of the midgut after infection of BmNPV in Bombyx mori.[Abstract] [Full Text] [Related] [New Search]