These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Panning anti-LPS nanobody as a capture target to enrich Vibrio fluvialis. Author: Wu M, Tu Z, Huang F, He Q, Fu J, Li Y. Journal: Biochem Biophys Res Commun; 2019 May 07; 512(3):531-536. PubMed ID: 30905409. Abstract: Vibrio fluvialis is considered as a human pathogen in developing countries. This bacterium is widely distributed in seawater and harbors that contains traces of salt. V. fluvialis can cause human enteritis and diarrhea, which has broken out at a global scale. Lipopolysaccharide (LPS) is a key bacterial antigen used to classify V. fluvialis serogroups. In this research, phage display technology was adopted to isolate nanobodies from a naïve phage library by using LPS as the target antigen. The isolated nanobody was tested in LPS ELISA and bacterial enzyme-linked immunosorbent assay Nanobody V23 had a high affinity toward the pathogen and was utilized to synthesize immunomagnetic beads for the enrichment of V. fluvialis. The capture efficiency of the immunomagnetic beads against V. fluvialis was 90.7 ± 3.2% (N = 3) through the plate-counting method. We generated a high-affinity nanobody against LPS from V. fluvialis and developed a rapid method of enriching V. fluvialis by using immunomagnetic beads.[Abstract] [Full Text] [Related] [New Search]