These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of hepatic glycogen phosphorylase and glycogen synthase by calcium and diacylglycerol. Author: Bouscarel B, Exton JH. Journal: Biochim Biophys Acta; 1986 Aug 29; 888(1):126-34. PubMed ID: 3091081. Abstract: Incubation of rat hepatocytes with angiotensin II (1 nM) produced a time-dependent accumulation of 1, 2-diacylglycerol and inactivation of glycogen synthase with maximum effects at 10 min. The level of diacylglycerol then gradually declined and the activity of glycogen synthase I returned to control values at 30 min. In contrast, angiotensin II caused an increase in cytosolic Ca2+ and an activation of glycogen phosphorylase which were rapid and transient, reaching maximum values in less than 2 min and then returning to control levels at 15 min. There were excellent correlations between the changes in glycogen synthase I and diacylglycerol levels and between the changes in phosphorylase alpha and cytosolic Ca2+ in these time-course studies. However, there was no correlation between the changes in diacylglycerol and phosphorylase alpha or between the changes in cytosolic Ca2+ and glycogen synthase I. Norepinephrine also caused a slow increase in diacylglycerol and inactivation of glycogen synthase, and a rapid increase in cytosolic free Ca2+ and activation of glycogen phosphorylase. Addition of an alpha1-adrenergic blocker (prazosin or phentolamine) caused rapid decreases in cytosolic free Ca2+ and phosphorylase alpha, but only slowly reversed the inactivation of synthase and accumulation of diacylglycerol. The dose-response curves for norepinephrine and prazosin on glycogen synthase were well correlated with those on diacylglycerol. It is proposed that in liver cells, Ca2+-mobilizing hormones regulate phosphorylase a through a Ca2+-dependent mechanism and inactivate glycogen synthase through the generation of diacylglycerol, at least in part. The data provide additional support for the view that protein kinase C may be important in the regulation of glycogen synthase in liver.[Abstract] [Full Text] [Related] [New Search]