These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Doping-induced enhancement of crystallinity in polymeric carbon nitride nanosheets to improve their visible-light photocatalytic activity. Author: Li YY, Zhou BX, Zhang HW, Ma SF, Huang WQ, Peng W, Hu W, Huang GF. Journal: Nanoscale; 2019 Apr 04; 11(14):6876-6885. PubMed ID: 30912790. Abstract: Structural defects can greatly inhibit electron transfer in two-dimensional (2D) layered polymeric carbon nitride (CN) unit, seriously lowering its utilization ratio of photogenerated charges during photocatalysis. Herein, we propose a new strategy based on intra-melon hydrogen bonding interactions in 2D CN frameworks to improve the crystallinity of CN. This concept was validated by removing some amino groups and connecting melon using codoped B and F atoms via a simple one-step sodium fluoroborate-assisted thermal treatment. The enhancement in crystallinity effectively promoted exciton dissociation and charge transfer in the CN nanosheets. Furthermore, the B/F dopants also improved the separation of photogenerated carriers by promoting charge capture. The highly efficient visible-light photocatalytic activity of the crystalline B/F-codoped CN nanosheets was demonstrated by degrading methyl orange, Rhodamine B, colorless phenol and tetracycline hydrochloride as models, where their degradation rate constant was more than 10, 5, 32 and 3 times higher than that of pure CN, respectively. Moreover, the B/F-codoped CN exhibited an excellent photoelectrocatalytic performance for the oxygen evolution reaction (OER), outperforming the precious-metal IrO2 catalyst. The simple and effective strategy proposed herein provides a direct route to engineer high crystallinity in 2D materials for tunable charge carrier separation and migration for electronic and optoelectronic applications.[Abstract] [Full Text] [Related] [New Search]