These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular dissection of cadmium-responsive transcriptome profile in a low-cadmium-accumulating cultivar of Brassica parachinensis. Author: Zhou Q, Yang Y, Yang Z. Journal: Ecotoxicol Environ Saf; 2019 Jul 30; 176():85-94. PubMed ID: 30921700. Abstract: Brassica parachinensis L., a daily consumed leaf vegetable, is a high-Cd accumulator that substantially threatens human health. Screening and breeding Cd pollution-safe cultivars (Cd-PSCs) of crops is a low-cost strategy to restrict human Cd intake from contaminated soils via the food chain. However, little is known about the molecular mechanisms underlying the low-Cd-accumulating traits of B. parachinensis Cd-PSCs. In the current study, we analyzed the transcriptomes of the Cd-treated (5 μM) roots and shoots of a low-Cd-accumulating cultivar (SJ19) and a high-Cd-accumulating cultivar (CX4) of B. parachinensis to reveal the molecular mechanisms in response to Cd stress. Compared to CX4, many pathways involved in carbohydrate and amino acid metabolisms were exclusively up-regulated in SJ19 roots upon exposure to low Cd concentrations, which may produce more energy and metabolites for Cd detoxification. Antioxidant enzymes in the peroxisome were up-regulated in both SJ19 and CX4 roots in response to Cd, while glutathione biosynthesis was only activated in SJ19 roots. In SJ19 shoots, pathways of photosynthesis and cell growth were activated to mitigate Cd-induced damages. Furthermore, Cd transport genes, such as MTP1, HMA3 and CAX family genes, were highly induced by Cd stress in SJ19 roots in accordance with the high Cd concentration in roots, while genes involved in root-to-shoot Cd translocation such as FRD3 and CESA3 were suppressed, which may contribute to the low Cd concertation in edible part of SJ19. Our study provides a genetic basis for further Cd-PSCs screening and breeding.[Abstract] [Full Text] [Related] [New Search]