These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Measurement of T2* in the human spinal cord at 3T. Author: Barry RL, Smith SA. Journal: Magn Reson Med; 2019 Aug; 82(2):743-748. PubMed ID: 30924198. Abstract: PURPOSE: To measure the transverse relaxation time T2* in healthy human cervical spinal cord gray matter (GM) and white matter (WM) at 3T. METHODS: Thirty healthy volunteers were recruited. Axial images were acquired using an averaged multi-echo gradient-echo (mFFE) T2*-weighted sequence with 5 echoes. We used the signal equation for an mFFE sequence with constant dephasing gradients after each echo to jointly estimate the spin density and T2* for each voxel. RESULTS: No global difference in T2* was observed between all GM (41.3 ± 5.6 ms) and all WM (39.8 ± 5.4 ms). No significant differences were observed between left (43.2 ± 6.8 ms) and right (43.4 ± 5.5 ms) ventral GM, left (38.3 ± 6.1 ms) and right (38.6 ± 6.5 ms) dorsal GM, and left (39.4 ± 5.8 ms) and right (40.3 ± 5.8 ms) lateral WM. However, significant regional differences were observed between ventral (43.4 ± 5.7 ms) and dorsal (38.4 ± 6.0 ms) GM (p < 0.05), as well as between ventral (42.9 ± 6.5 ms) and dorsal (37.9 ± 6.2 ms) WM (p < 0.05). In analyses across slices, inferior T2* was longer than superior T2* in GM (44.7 ms vs. 40.1 ms; p < 0.01) and in WM (41.8 ms vs. 35.9 ms; p < 0.01). CONCLUSIONS: Significant differences in T2* are observed between ventral and dorsal GM, ventral and dorsal WM, and superior and inferior GM and WM. There is no evidence for bilateral asymmetry in T2* in the healthy cord. These values of T2* in the spinal cord are notably lower than most reported values of T2* in the cortex.[Abstract] [Full Text] [Related] [New Search]