These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High-frequency characteristics of L- and M-cone driven electroretinograms. Author: Aher AJ, Jacob MM, Kremers J. Journal: Vision Res; 2019 Jun; 159():35-41. PubMed ID: 30926305. Abstract: Electroretinograms (ERGs) elicited by high temporal frequency (26-95 Hz) L- and M-cone isolating sine-wave stimuli were investigated in human observers for full-field (FF) and different spatially restricted stimulus sizes (70°, 50°, 30°, and 10° diameter). Responses to L- and M-cone isolating FF stimuli were maximal around 48 Hz and decreased gradually with increasing temporal frequency up to 95 Hz. The response maximum was shifted to about 30-32 Hz for both L- and M-cone driven responses obtained with spatially restricted stimuli. The M-cone driven responses could only be measured up to 54 Hz with 70° stimuli. The response amplitudes for L- and M-cones and L-/M-cone amplitude ratios decreased with decreasing stimulus size. The ERG response phases to L- and M-cone isolating stimuli decreased with increasing temporal frequency and were about -160° apart for all stimulus sizes up to 34 Hz. Further increase in the temporal frequency displayed a positive correlation between stimulus size and L-M phase difference. The ERG data indicate that the responses evoked by high temporal frequency cone isolating stimuli reflect two mechanisms, one that is more centrally located and displays a maximum at about 30-32 Hz and a peripheral mechanism that is sensitive to higher temporal modulations. We propose that the peripheral mechanism (FF ERGs) reflects magnocellular activity, whereas the central mechanism (ERGs with spatially restricted stimuli) is based on a parvocellular activity up to about 30 Hz.[Abstract] [Full Text] [Related] [New Search]