These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Binding pocket-based design, synthesis and biological evaluation of novel selective BRD4-BD1 inhibitors. Author: Ma J, Chen H, Yang J, Yu Z, Huang P, Yang H, Zheng B, Liu R, Li Q, Hu G, Chen Z. Journal: Bioorg Med Chem; 2019 May 01; 27(9):1871-1881. PubMed ID: 30926312. Abstract: Bromodomain-containing protein 4 (BRD4), consisting of two tandem bromodomains (BD1 and BD2), is key epigenetic regulator in fibrosis and cancer, which has been reported that BD1 and BD2 have distinct roles in post-translational modification. But there are few selective inhibitors toward those two domains. Herein, this study designed and synthesized a series of novel selective BRD4-BD1 inhibitors, using computer-aided drug design (CADD) approach focused on exploring the difference of the binding pockets of BD1 and BD2, and finding the His437 a crucial way to achieve BRD4-BD1 selectivity. Our results revealed that the compound 3u is a potent selective BRD4-BD1 inhibitor with IC50 values of 0.56 μM for BD1 but >100 μM for BD2. The compound exhibited a broad spectrum of anti-proliferative activity against several human cancer and fibroblastic cell lines, which might be related to its capability of reducing the expression of c-Myc and collagen I. Furthermore, it could induce apoptosis in A375 cells. To the contrary, the selective BD2 inhibitor, RVX-208, did not indicate any of these activities. Our findings highlight that the function of BRD4-BD1 might be predominant in fibrosis and cancer. And it is rational to further develop novel selective BRD4-BD1 inhibitors.[Abstract] [Full Text] [Related] [New Search]