These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A thiol-sensitive degradative process of liver uncouples autophosphorylation of the insulin receptor from insulin binding.
    Author: Lerea KM, Livingston JN.
    Journal: Biochem J; 1986 Jun 01; 236(2):535-42. PubMed ID: 3092812.
    Abstract:
    Insulin receptors derived from highly purified rat liver plasma membranes and Golgi membranes showed differences in insulin-mediated receptor autophosphorylation, even though their insulin-binding characteristics were similar. This difference was related to the generation of a Mr-84,000 fragment of the Mr-90,000 beta subunit of the plasma-membrane receptor, a fragment that was not present in the receptor from Golgi membranes, in the absence of a change in the insulin-binding alpha subunit. When autophosphorylation activity was based on insulin binding, the activity of the plasma-membrane-derived insulin receptor was decreased to 25-30% that of the Golgi-derived receptor. Endoglycosidase F digestion produced changes in the Mr values for both species, but they were not converted into a single subunit, thereby suggesting differences in the protein component of the two subunits. Although the proteinase inhibitors phenylmethanesulphonyl fluoride, ovomucoid and aprotinin failed to block the formation of the Mr-84,000 fragment, the presence of iodoacetamide or EDTA during liver homogenization markedly inhibited fragment generation and allowed the plasma-membrane insulin receptor to retain an autophosphorylation activity comparable with that present in insulin receptors from Golgi membranes. Thus a thiol-sensitive, cation-dependent, degrading activity has been identified that can uncouple the insulin-binding activity of the plasma-membrane insulin receptor from its tyrosine kinase activity.
    [Abstract] [Full Text] [Related] [New Search]