These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A voltammetric biosensor for mercury(II) using reduced graphene oxide@gold nanorods and thymine-Hg(II)-thymine interaction. Author: Jin H, Zhang M, Wei M, Cheng JH. Journal: Mikrochim Acta; 2019 Mar 30; 186(4):264. PubMed ID: 30929090. Abstract: The presented voltammetric mercury(II) sensor is based on the specific interaction between Hg(II) ion and thymine-thymine base pairs. Reduced graphene oxide is functionalized with gold nanorods and then loaded with thionine and streptavidin (RGO@AuNR-TH-SA). A T-rich thiolated DNA (S1) is firstly immobilized on a gold electrode. In the presence of Hg (II), the T-rich biotin-DNA (biotin-S2) binds to S1 via T-Hg(II)-T interaction. Then, the RGO@AuNR-TH-SA is linked to the gold electrode by specific binding between SA and biotin-S2. This produces an electrochemical signal (at -0.208 V vs. Ag/AgCl) of TH that depends on the concentration of Hg (II). The peak current increases linearly in the 1 to 200 nM Hg (II) concentration range, and the detection limit is 0.24 nM. The sensor is highly selective for Hg (II) over other environmentally relevant metal ions, even at concentration ratios of >1000. Graphical abstract Schematic representation of a voltammetric biosensor for mercury(II) using reduced graphene oxide@gold nanorods (RGO@AuNRs) and thymine-Hg(II)-thymine interaction. It is based on the fact that RGO@AuNR can strongly adsorb thionine (TH) and streptavidin to realize the signal amplification.[Abstract] [Full Text] [Related] [New Search]