These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interrogating Kinetic versus Thermodynamic Topologies of Metal-Organic Frameworks via Combined Transmission Electron Microscopy and X-ray Diffraction Analysis. Author: Gong X, Noh H, Gianneschi NC, Farha OK. Journal: J Am Chem Soc; 2019 Apr 17; 141(15):6146-6151. PubMed ID: 30929446. Abstract: Synthetic protocols that preferentially result in metal-organic framework (MOF) crystallization of one topology over another remain an elusive, empirical process. This is primarily because of a lack of fundamental insights into MOF crystal growth and the effect of various experimental parameters on the resulting topologies. In this Communication, we demonstrate the temperature-topology relationship of MOFs constructed from hexanuclear oxozirconium cluster nodes and tetrakis(4-carboxylphenyl)porphyrin linkers via a combined transmission electron microscopy and powder X-ray diffraction study. Synthesis at room temperature led to a mixed phase consisting of 12-connected (assuming no defects) MOF-525 and 6-connected PCN-224, possessing ftw and she topologies, respectively. When the temperature was raised to 145 °C, 8-connected PCN-222 (csq topology) was found, with a possible concurrence of another 8-connected NU-902 (scu topology) and 12-connected PCN-223 (shp topology), in addition to MOF-525 and PCN-224. With an increase in reaction time at 145 °C, a change in product distribution was observed where PCN-222 remained the major crystal phase after 7 days, while the contribution from MOF-525 and PCN-224 decreased. These data suggest that MOF-525 and PCN-224 are the kinetic products while PCN-222 is the thermodynamic product.[Abstract] [Full Text] [Related] [New Search]