These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Doped N/Ag Carbon Dot Catalytic Amplification SERS Strategy for Acetamiprid Coupled Aptamer with 3,3'-Dimethylbiphenyl-4,4'-diamine Oxidizing Reaction.
    Author: Feng X, Li C, Liang A, Luo Y, Jiang Z.
    Journal: Nanomaterials (Basel); 2019 Mar 25; 9(3):. PubMed ID: 30934552.
    Abstract:
    The as-prepared co-doped N/Ag carbon dot (CDNAg) has strong catalysis of H₂O₂ oxidation of 3,3'-dimethylbiphenyl-4,4'-diamine (DBD). It forms an oxidation product (DBDox) with surface-enhanced Raman scattering (SERS) activity at 1605 cm-1 in the silver nanosol substrate, and a CDNAg catalytic amplification with SERS analytical platform can be structured based on aptamer (Apt) with the DBD oxidizing reaction. For example, the aptamer (Apt) of acetamiprid (ACT) can be adsorbed on the surface of CDNAg, resulting in inhibited catalytic activity, the reduced generation of DBDox, and a weakened SERS intensity. When the target molecule ACT was added, it formed a stable Apt-ACT complex and free CDNAg that restored catalytic activity and linearly enhanced the SERS signal. Based on this, we proposed a new quantitative SERS analysis method for the determination of 0.01⁻1.5 μg ACT with a detection limit of 0.006 μg/L.
    [Abstract] [Full Text] [Related] [New Search]