These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: HIF-1α-TWIST pathway restrains cyclic mechanical stretch-induced osteogenic differentiation of bone marrow mesenchymal stem cells.
    Author: Liu Y, Huang X, Yu H, Yang J, Li Y, Yuan X, Guo Q.
    Journal: Connect Tissue Res; 2019 Nov; 60(6):544-554. PubMed ID: 30938209.
    Abstract:
    Aim: Mechanical strain plays a crucial role in bone formation and remodeling. Hypoxia-inducible factor (HIF)-1α and TWIST are upstream of master regulators of osteogenesis, including runt-related transcription factor 2 (RUNX2) and bone morphogenetic proteins (BMPs). This study investigated the effect of the HIF-1α-TWIST pathway on cyclic mechanical stretch-induced osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) and the underlying mechanism. Materials and Methods: BMSCs were isolated from bone marrow derived from the femurs and humeri of Sprague-Dawley rats. Osteogenic differentiation of BMSCs was induced by applying cyclic mechanical stretch using the Flexcell Tension System. HIF-1α and TWIST were knocked down using recombinant lentiviral vectors. Osteogenic differentiation was evaluated by real-time qPCR, western blotting, and the alkaline phosphatase (ALP) activity assay. Results: Cyclic mechanical stretch increased ALP activity and expression of HIF-1α and TWIST in BMSCs. Knockdown of HIF-1α decreased TWIST expression in stretched BMSCs. Moreover, knockdown of HIF-1α or TWIST enhanced cyclic mechanical stretch-induced osteogenic differentiation of BMSCs. In addition, knockdown of TWIST increased expression of RUNX2 and BMP2 in stretched BMSCs. Conclusions: The HIF-1α-TWIST signaling pathway inhibits cyclic mechanical stretch-induced osteogenic differentiation of BMSCs. This finding may facilitate cell and tissue engineering for clinical applications.
    [Abstract] [Full Text] [Related] [New Search]