These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Development of label-free plasmonic Au-TiO2 thin film immunosensor devices. Author: Barbosa AI, Borges J, Meira DI, Costa D, Rodrigues MS, Rebelo R, Correlo VM, Vaz F, Reis RL. Journal: Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():424-432. PubMed ID: 30948078. Abstract: This work reports on the development of a label-free immunosensor technology, based on nanoplasmonic Au-TiO2 thin films. The Au-TiO2 thin films were prepared by cost-effective reactive DC magnetron sputtering, followed by a thermal annealing procedure. The latter promoted the growth of the Au nanoparticles throughout the TiO2 matrix and induced some morphological changes, which are the base for the immunosensor device functionality. A posterior plasma etching treatment was required to partially expose the nanoparticles to the biological environment. It gave rise to a 6-fold increase of the total area of gold exposed, allowing further possibilities for the sensor sensitivity enhancement. Experimental results demonstrated the successful functionalization of the films' surface with antibodies, with the immobilization occurring preferentially in the exposed nanoparticles and negligibly on the TiO2 matrix. Antibody adsorption surface coverage studies revealed antibody low affinity to the film's surface. Nevertheless, immunoassay development experiments showed a strong and active immobilized antibody monolayer at an optimized antibody concentration. This allowed a 236 signal-to-noise-ratio in a confocal microscope, using mouse IgG and 100 ng/ml of Fab-specific anti-mouse IgG-FITC conjugated. Label-free detection of the optimized antibody monolayer on Au-TiO2 thin films was also tested, revealing an expected redshift in the LSPR band, which demonstrates the suitability for the development of cost-effective, label-free LSPR based immunosensor devices.[Abstract] [Full Text] [Related] [New Search]