These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhancement of substrate supply and ido expression to improve 4-hydroxyisoleucine production in recombinant Corynebacterium glutamicum ssp. lactofermentum. Author: Shi F, Zhang S, Li Y, Lu Z. Journal: Appl Microbiol Biotechnol; 2019 May; 103(10):4113-4124. PubMed ID: 30953121. Abstract: 4-Hydroxyisoleucine (4-HIL) has potential value in treating diabetes. L-isoleucine dioxygenase (IDO) catalyzes the hydroxylation of L-isoleucine (Ile) to form 4-HIL with the concomitant oxidation of α-ketoglutarate (α-KG) and oxygen consumption. In our previous study, by expressing the ido gene in the Ile producer Corynebacterium glutamicum ssp. lactofermentum SN01, 4-HIL was de novo-synthesized from glucose without adding either Ile or α-KG. In this study, synergistically improving the substrates supply and IDO activity was applied to enhance the de novo biosynthesis of 4-HIL. Deletion of aceA and blocking of the glyoxylate pathway effectively enhanced α-KG supply and Ile synthesis and thus improved 4-HIL production to 69.47 ± 2.18 mM, 18.9% higher than in the original strain. Coexpression of mqo with ido further improved Ile synthesis but decreased 4-HIL production, partially due to the inadequate activity of IDO. Coexpression of another gene, ido3, with mqo and ido efficiently promoted IDO activity, thus improving 4-HIL production to 91.54 ± 8.29 mM. Further expression of vgb and promotion of the oxygen uptake rate did not change the 4-HIL titer significantly but increased the 4-HIL production rate in the first 72 h of fermentation. After fermentation in the optimized medium, 4-HIL production by the final strains increased to 112-117 mM, indicating these strains are promising candidates for producing 4-HIL. These results demonstrate that synergistically promoting substrate supply and improving IDO activity are efficient approaches to enhance 4-HIL production in C. glutamicum.[Abstract] [Full Text] [Related] [New Search]