These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of insulin resistance by targeting the insulin-like growth factor 1 receptor with microRNA-122-5p in hepatic cells.
    Author: Dong L, Hou X, Liu F, Tao H, Zhang Y, Zhao H, Song G.
    Journal: Cell Biol Int; 2019 May; 43(5):553-564. PubMed ID: 30958584.
    Abstract:
    Insulin resistance (IR) is a common etiology of type 2 diabetes (T2D) defined by a state of decreased reactivity to insulin in multiple organs, such as the liver. This study aims to investigate how microRNA-122-5p (miR-122) regulates the hepatic IR in vitro. We first found that the miR-122 level was upregulated in the liver of rats fed with a high-fat diet and injected with streptozotocin (T2D rats), while the expression level of insulin-like growth factor 1 receptor (IGF-1R), a potential target of miR-122, was downregulated in the diabetic liver. In vitro, glucosamine-induced IR was introduced in HepG2 hepatic cells, and the levels of miR-122 and IGF-1R were further assessed. An increase of miR-122 level and a decrease of IGF-IR level were observed in IR hepatic cells, which was the same as that in the diabetic liver. Results of the luciferase reporter assay validated IGF-1R as a direct target of miR-122. Moreover, in IR HepG2 cells, antagonizing miR-122 with its specific inhibitor enhanced glucose uptake and suppressed the expression of glucose 6-phosphatase and phosphoenolpyruvate carboxykinase, two key enzymes in regulating gluconeogenesis. Such alterations induced by the miR-122 inhibitor in IR hepatic cells were impaired when IGF-1R was simultaneously knocked down. In addition, the PI3K/Akt pathway was deactivated in IR cells, and then reactivated with miR-122 inhibitor transfection. In conclusion, our study demonstrates that miR-122 is able to regulate IR in hepatic cells by targeting IGF-1R.
    [Abstract] [Full Text] [Related] [New Search]