These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Concentration dependence of halide fluxes and selectivity of the anion pathway in toad skin. Author: Harck AF, Larsen EH. Journal: Acta Physiol Scand; 1986 Oct; 128(2):289-304. PubMed ID: 3096079. Abstract: The isolated toad (Bufo bufo) skin was mounted under voltage-clamp conditions in a chamber shown to cause no significant edge damage. The serosal side of the skin was bathed with NaCl-Ringer's, and the passive voltage-sensitive anion conductance studied in its fully voltage activated state, V = -80 mV (apical bath negative). The active sodium currents were eliminated by replacing external Na+ with K+. With [Cl-]o varying between 1.45 mM and 110 mM (gluconate substitution) and [I-]o = 3 mM, the total clamping current (y) and the sum of halide currents (x), estimated from flux measurements, were related by y = 1.0x-3.7 microA cm-2 (r2 = 0.98, n = 50 preparations). The increase in [Cl-]o produced a sigmoidal increase in Cl- influx and clamping current, with the rate coefficient for the influx increasing with [Cl-]o for 1.45 less than [Cl-]o less than 60 mM, but decreasing slightly again as [Cl-]o was further raised to 110 mM. A similar relationship was obtained between the rate coefficient for the Br- influx and [Br-]o, and the I- influx and [Cl-]o, indicating that these three ions are transported by a pathway that is activated by Cl-o and Br-o. The rate coefficients for the influxes ranked as follows, I-:Cl-:Br- = 0.7:1:1.3. The I-/Cl- selectivity was shown to be independent of the degree of Cl-o activation of the anion pathway, and identical with the I-/Cl- selectivity of a furosemide-sensitive, conductive pathway. With [Cl-]o, [Br-]o, or [I-]o = 110 mM, the currents ranked as follows, Cl-:Br-:I- = 1:0.68:0.06, indicating that Cl-, to a lesser extent Br-, and I-, poorly activate the conductive anion pathway. External I- was a potent inhibitor of the Cl-o activation of the Cl- conductance. The unidirectional I- fluxes ([I-]o = [I-]i = 3 mM, [Cl-]o = [Cl-]i = 110 mM) revealed passive transport for V less than -50 mV, active transport for V = o mV, and exchange diffusion for V = 50 mV, confirming our previous finding that depending on the transepithelial potential, the toad skin exhibits three modes of anion transport. A model that shares some properties with that of the anion transport system of the red cell membrane accounts for our findings, and for an inwardly directed active Cl- flux in terms of Cl-/HCO3- exchange.[Abstract] [Full Text] [Related] [New Search]