These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nitrogen-doped graphene quantum dots coated with gold nanoparticles for electrochemiluminescent glucose detection using enzymatically generated hydrogen peroxide as a quencher.
    Author: Ran P, Song J, Mo F, Wu J, Liu P, Fu Y.
    Journal: Mikrochim Acta; 2019 Apr 10; 186(5):276. PubMed ID: 30969371.
    Abstract:
    Nitrogen-doped graphene quantum dots (N-GQDs) were prepared from dicyandiamide and then used as both an electrochemiluminescence (ECL) emitter and a reductant to produce gold nanoparticles (Au-N-GQDs) on their surface without using any reagent. In order to avoid resonance energy transfer, the Au-N-GQDs were stabilized with chitosan. Transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), UV-vis spectroscopy (UV-vis) and ECL methods were used to characterize the nanocomposite. The materials was placed on a glassy carbon electrode (GCE), and the ECL signals are found to be strongly quenched by hydrogen peroxide that is enzymatically produced by oxidation of glucose. With the applied typical potential of -1.7 V, the ECL of the Au-N-GQDs modified GCE decreases linearly in the 10 nM to 5.0 μM glucose concentration range, and the lower detection limit is 3.3 nM. The influence of H2O2 to the signal has been discussed and a possible mechanism has been presented. Graphical abstract Schematic presentation of the reduction of gold nanoparticles with nitrogen-droped graphene quantum dots (N-GQDs) to form Au-N-GQDs. They were used to detect glucose by electrochemiluminescence through a signal off strategy.
    [Abstract] [Full Text] [Related] [New Search]