These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Super-Resolution Imaging of G Protein-Coupled Receptors Using Ground State Depletion Microscopy. Author: Caetano Crowley FA, Heit B, Ferguson SSG. Journal: Methods Mol Biol; 2019; 1947():323-336. PubMed ID: 30969425. Abstract: G protein-coupled receptors (GPCRs) comprise the largest family of integral membrane proteins, which are coupled to heterotrimeric G proteins to influence cell signaling. Subsequent to G protein activation, agonist-stimulated G protein-coupled receptor kinase (GRK) phosphorylation results in the recruitment of β-arrestin proteins, which form both stable and unstable complexes with GPCRs. β-Arrestins when bound to GPCRs not only contribute to the uncoupling of G protein signaling but also to the redistribution of GPCRs to clathrin-coated pits via their association with both clathrin and β2-adaptin facilitating GPCR endocytosis. This allows β-arrestins to couple GPCRs to additional cell signaling proteins allowing a second wave of receptor signaling. Importantly, the β-arrestin-regulated subcellular localization of these complexes also plays a critical role in regulating how these signals are transduced and which proteins are recruited. Here, we describe a methodology for assessing the GPCR subcellular localization by super-resolution microscopy and suggest that this methodology can be extended to the study of GPCR/protein complexes.[Abstract] [Full Text] [Related] [New Search]