These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Scaffold-mediated non-viral delivery platform for CRISPR/Cas9-based genome editing. Author: Chin JS, Chooi WH, Wang H, Ong W, Leong KW, Chew SY. Journal: Acta Biomater; 2019 May; 90():60-70. PubMed ID: 30978509. Abstract: Genome editing, especially via the simple and versatile type II CRISPR/Cas9 system, offers an effective avenue to precisely control cell fate, an important aspect of tissue regeneration. Unfortunately, most CRISPR/Cas9 non-viral delivery strategies only utilise micro-/nano-particle delivery methods. While these approaches provide reasonable genomic editing efficiencies, their systemic delivery may lead to undesirable off-target effects. For in vivo applications, a more localized and sustained delivery approach may be useful, particularly in the context of tissue regeneration. Here, we developed a scaffold that delivers the CRISPR/Cas9 components (i.e. single guide RNA (sgRNA) and Cas9 protein complexes) in a localized and non-viral manner. Specifically, using mussel-inspired bioadhesive coating, polyDOPA-melanin (pDOPA), we adsorbed Cas9:sgRNA lipofectamine complexes onto bio-mimicking fiber scaffolds. To evaluate the genome-editing efficiency of this platform, U2OS.EGFP cells were used as the model cell type. pDOPA coating was essential in allowing Cas9:sgRNA lipofectamine complexes to adhere onto the scaffolds with a higher loading efficiency, while laminin coating was necessary for maintaining cell viability and proliferation on the pDOPA-coated fibers for effective gene editing (21.5% editing efficiency, p < 0.001). Importantly, U2OS.EGFP cells took up Cas9:sgRNA lipofectamine complexes directly from the scaffolds via reverse transfection. Overall, we demonstrate the efficacy of such fiber scaffolds in providing localized, sustained and non-viral delivery of Cas9:sgRNA complexes. Such genome editing scaffolds may find useful applications in tissue regeneration. STATEMENT OF SIGNIFICANCE: Currently, there is a lack of effective non-viral means to deliver CRISPR/Cas9 components for genome editing. Most existing approaches only utilize micro-/nano-particles by injection or systemic delivery, which may lead to undesirable off-target effects. Here, we report a platform that delivers the CRISPR/Cas9 components (i.e. single guide RNA (sgRNA) and Cas9 protein complexes) in a localized and sustained manner. We used mussel-inspired bioadhesive coating to functionalize the bio-mimicking fiber scaffolds with Cas9:sgRNA lipofectamine complexes, to allow effective gene editing for the cells seeded on the scaffolds. Importantly, the cells took up Cas9:sgRNA lipofectamine complexes directly from the scaffolds. Such genome editing scaffolds may find useful applications in tissue regeneration.[Abstract] [Full Text] [Related] [New Search]