These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A sensitive and selective multiple reaction monitoring mass spectrometry method for simultaneous quantification of flavonol glycoside, terpene lactones, and biflavonoids in Ginkgo biloba leaves. Author: Wang LT, Fan XH, Jian Y, Dong MZ, Yang Q, Meng D, Fu YJ. Journal: J Pharm Biomed Anal; 2019 Jun 05; 170():335-340. PubMed ID: 30986686. Abstract: In this study, an efficient and sensitive UHPLC-QQQ-MS/MS (MRM) analytical strategy was established firstly for simultaneous determination of 11 components, including 3 original flavonol glycoside, 4 terpene lactones and 4 biflavonoids in Ginkgo biloba leaves. The validated strategy exhibited proper linearity (R2 ≥0.99) in the range of 0.5-125 μg/mL, and intra and inter-day precision were lower than 4.09% and 4.80%, respectively. Limit of detection (LOD) and quantification (LOQ) were calculated, ranging from 0.2-4.6 ng/mL, with repeatability values between 1.98% and 4.48%. The average recoveries were all in the range of 98.45-106.67% with RSD (n = 3) for the related compounds. Subsequently, the proposed method was used for the analysis of Ginkgo biloba leaves during leaf senescence. Results showed the dominant flavonol glycosides were kaempferol-3-O-rutinoside and isorhamnetin-3-O-rutinoside, the level of terpene lactones and biflavonoids reached the highest in the latest harvest samples. Compared with conventional detection method, the present method could directly analyze original flavonol glycoside without acid hydrolysis process and terpene lactones without the ELSD in a high sensitivity. Moreover, the biflavonoids in Ginkgo biloba leaves were also simultaneously quantified. The results demonstrated that the developed method was accurate, sensitive and reliable for simultaneous quantification of multi-components in Ginkgo biloba leaves, and this study should be significant for the comprehensive utilization and development of Ginkgo biloba resources.[Abstract] [Full Text] [Related] [New Search]