These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Two years of aging influences the distribution and lability of metal(loid)s in a contaminated soil amended with different biochars. Author: He E, Yang Y, Xu Z, Qiu H, Yang F, Peijnenburg WJGM, Zhang W, Qiu R, Wang S. Journal: Sci Total Environ; 2019 Jul 10; 673():245-253. PubMed ID: 30991316. Abstract: A two-year soil incubation experiment was performed to investigate the long-term impacts of biochars (kenaf core and sewage sludge biochar (KBC and SBC) pyrolyzed at 350 °C and 550 °C) on metal(loid)s immobilization. Both KBC and SBC can immobilize Pb and Cu in contaminated soil, whereas they showed little effects on the immobilization of Zn, Cd and As. Interactions between the biochar and soil during two-year aging changed the metal species on both soil and biochar particles. KB350 formed more biochar-mineral complexes and O-containing functional groups than KB550 and thus transferred more residual metal(loid)s to their reducible species. More metal(loid)s sorbed on the KB350 than KB550 after two-year aging. However, SBC changed the acid-soluble species of metal(loid)s into the residual species during the aging process, probably due to the release of phosphate. Upon aging, SB550 exhibited a more significant increase in the residual metal amount and more sorption of metal(loid)s on the biochar particles than SB350 due to sorption of organic carbon and formation of meta-kaolinite. A key finding of our study was that different biochars have contrasting impacts on metal speciation and lability upon 2-year aging. This should be considered in assessing the actual risk of biochar-amended soils.[Abstract] [Full Text] [Related] [New Search]