These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanical and dentin bond strength properties of the nanosilver enriched glass ionomer cement.
    Author: Jowkar Z, Jowkar M, Shafiei F.
    Journal: J Clin Exp Dent; 2019 Mar; 11(3):e275-e281. PubMed ID: 31001399.
    Abstract:
    BACKGROUND: The aim of this study was to investigate the mechanical properties and dentin microshear bond strength of a conventional glass ionomer cement (GIC) compared to GIC supplemented with silver nanoparticles (SNPs) at 0.1% and 0.2% (w/w). MATERIAL AND METHODS: SNPs were incorporated into a conventional GIC at 0.1% and 0.2% (w/w). The unmodified GIC was used as the control group. Compressive strength, flexural strength, and micro-shear bond strength (µSBS) to dentin were evaluated using a universal testing machine. Surface microhardness was determined using a Vickers microhardness tester. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test. RESULTS: GICs containing 0.1% and 0.2% (w/w) SNPs significantly improved compressive strength, surface microhardness, and dentin µSBS compared to the unmodified GIC (p<0.05). A significant increase in the flexural strength was found for the GIC containing 0.2% (w/w) SNPs (p<0.05). However, the GIC containing 0.1% (w/w) SNPs did not affect flexural strength. CONCLUSIONS: GIC supplemented with SNP is a promising material for restoration because of its improved mechanical and bond strength properties. Therefore, it may be suggested for use especially in higher stress-bearing site restorations. Key words:Glass ionomer cement, mechanical properties, micro-shear bond strength, silver nanoparticle.
    [Abstract] [Full Text] [Related] [New Search]