These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of the role of N-glycosylation sites in the respiratory syncytial virus fusion protein in virus replication, syncytium formation and antigenicity. Author: Leemans A, Boeren M, Van der Gucht W, Martinet W, Caljon G, Maes L, Cos P, Delputte P. Journal: Virus Res; 2019 Jun; 266():58-68. PubMed ID: 31004621. Abstract: Respiratory syncytial virus (RSV) is a leading cause of infant hospitalization worldwide each year and there is presently no licensed vaccine to prevent severe RSV infections. Two major RSV glycoproteins, attachment (G) and fusion (F) protein, regulate viral replication and both proteins contain potential glycosylation sites which are highly variable for the G protein and conserved for the F protein among virus isolates. The RSV F sequence possesses five N-glycosylation sites located in the F2 subunit (N27 and N70), the p27 peptide (N116 and N126) and the F1 subunit (N500). The importance of RSV F N-glycosylation in virus replication and immunogenicity is not yet fully understood, and a better understanding may provide new insights for vaccine development. By using a BAC-based reverse genetics system, recombinant viruses expressing F proteins with loss of N-glycosylation sites were made. Mutant viruses with single N-glycosylation sites removed could be recovered, while this was not possible with the mutant with all N-glycosylation sites removed. Although the individual RSV F N-glycosylation sites were shown not to be essential for viral replication, they do contribute to the efficiency of in vitro and in vivo viral infection. To evaluate the role of N-glycosylation sites on RSV F antigenicity, serum antibody titers were determined after infection of BALB/c mice with RSV expressing the glycomutant F proteins. Infection with recombinant virus lacking the N-glycosylation site at position N116 (RSV F N116Q) resulted in significant higher neutralizing antibody titers compared to RSV F WT infection, which is surprising since this N-glycan is present in the p27 peptide which is assumed to be absent from the mature F protein in virions. Thus, single or combined RSV F glycomutations which affect virus replication and fusogenicity, and which may induce enhanced antibody responses upon immunization could have the potential to improve the efficacy of RSV LAV approaches.[Abstract] [Full Text] [Related] [New Search]