These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Immunization of mice by the co-administration of codon-optimized HPV16 E7 and lL12 genes against HPV16-associated cervical cancer. Author: Ajorloo M, Alamdary A, Soleimanjahi H, El Boulani A, Khanizadeh S, Nikoo HR. Journal: Microb Pathog; 2019 Jul; 132():20-25. PubMed ID: 31004722. Abstract: BACKGROUND: Various promising procedures have been used to improve the potency of DNA vaccines for the treatment of human papillomavirus type 16 (HPV16) infections. Interleukin-12 (IL12) is a powerful adjuvant that can contribute to T cell-mediated protection against many pathogens, specifically viruses. Considering the important role of T cell-mediated immunity in tumor clearance, the induction of these responses can help control the progression of tumors in animal models. We have demonstrated that the co-administration of codon-optimized E7 (uE7) gene of HPV16 with interleukin-12 is effective in the development of antitumor responses. OBJECTIVES: The present study examined the co-administration of codon-optimized HPV16 E7 gene with murine interleukin-12 gene (mIL-12) as a vaccine adjuvant in tumor mice model. MATERIALS AND METHODS: C57BL/6 mice were studied for tumor progression after injection of recombinant DNA vaccines. Lactate dehydrogenase (LDH) and IFN-γ were measured to evaluate the activity of cytotoxic T lymphocytes (CTLs). Measurements of tumor volume and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay were used for assessment of therapeutic antitumor effects of the vaccines. RESULTS: Results showed that DNA vaccines, specifically codon-optimized E7/murine interleukin-12 (mIL-12), elicited significant differences in levels of IFN-γ and cytotoxic T lymphocyte (CTLs) responses compared to control groups. Furthermore, higher antitumor response and lower tumor size in the vaccine group was significantly evident compared to control group. CONCLUSION: The co-administration of codon-optimized HPV16 E7 gene with IL12 significantly enhances the DNA vaccine potency against HPV16-associated cervical cancer.[Abstract] [Full Text] [Related] [New Search]