These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The role of fuel type and combustion phase on the toxicity of biomass smoke following inhalation exposure in mice. Author: Kim YH, King C, Krantz T, Hargrove MM, George IJ, McGee J, Copeland L, Hays MD, Landis MS, Higuchi M, Gavett SH, Gilmour MI. Journal: Arch Toxicol; 2019 Jun; 93(6):1501-1513. PubMed ID: 31006059. Abstract: The characteristics of wildland fire smoke exposures which initiate or exacerbate cardiopulmonary conditions are unclear. We previously reported that, on a mass basis, lung toxicity associated with particulate matter (PM) from flaming smoke aspirated into mouse lungs is greater than smoldering PM. In this study, we developed a computer-controlled inhalation system which can precisely control complex biomass smoke emissions from different combustion conditions. This system was used to examine the toxicity of inhaled biomass smoke from peat, eucalyptus, and oak fuels generated under smoldering and flaming phases with emissions set to the same approximate concentration of carbon monoxide (CO) for each exposure (60-110 ppm), resulting in PM levels of ~ 4 mg/m3 for flaming and ~ 40 mg/m3 for smoldering conditions. Mice were exposed by inhalation 1 h/day for 2 days, and assessed for lung toxicity at 4 and 24 h after the final exposure. Peat (flaming and smoldering) and eucalyptus (smoldering) smoke elicited significant inflammation (neutrophil influx) in mouse lungs at 4 h with the peat (flaming) smoke causing even greater lung inflammation at 24-h post-exposure. A significant alteration in ventilatory timing was also observed in mice exposed to the peat (flaming) and eucalyptus (flaming and smoldering) smoke immediately after each day of exposure. No responses were seen for exposures to similar concentrations of flaming or smoldering oak smoke. The lung toxicity potencies (neutrophil influx per PM mass) agreed well between the inhalation and previously reported aspiration studies, demonstrating that although flaming smoke contains much less PM mass than smoldering smoke, it is more toxic on a mass basis than smoldering smoke exposure, and that fuel type is also a controlling factor.[Abstract] [Full Text] [Related] [New Search]