These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Human lymphokine-activated killer (LAK) cells: identification of two types of effector cells.
    Author: Tilden AB, Itoh K, Balch CM.
    Journal: J Immunol; 1987 Feb 15; 138(4):1068-73. PubMed ID: 3100627.
    Abstract:
    We analyzed the antigenic phenotype of lymphokine-activated killer (LAK) effector cells. Human blood lymphocytes were cultured for 3 days with 100 U/ml recombinant interleukin 2 (rIL 2), subpopulations isolated with monoclonal antibodies and a fluorescence-activated cell sorter (FACS) and assayed for cytotoxic activity against 51chromium labeled noncultured melanoma tumor cells. Initial experiments compared the LAK effector function of CD5+ T lymphocytes vs CD5- cells (predominantly CD16+ NK cells). The mean percent specific release at a 10:1 effector:target (E:T) ratio was 25% +/- 16 for CD5- cells, 10% +/- 6 for CD5+ cells, and 22% +/- 9 for unsorted cells. In contrast, when lymphocyte subpopulations were isolated before rIL 2 culture (LAK precursors), CD5- cells but not CD5+ cells developed LAK activity (28% +/- 12 vs 1% +/- 1, mean percent specific release, 10:1 E:T ratio), confirming our previous results showing that only CD16+ cells were LAK precursors. The discrepancy between LAK effector and precursor phenotypes suggested that LAK precursors acquired CD5 determinants during rIL 2 culture; however, double label immunofluorescence of rIL 2 cultured CD16+ cells showed that this was not the case. The data suggested that in the presence of other cell types, some T lymphocytes may develop LAK activity, but purified blood T lymphocytes do not develop LAK function when cultured with rIL 2 alone. We also analyzed LAK effector function in lymphocyte subpopulations defined by CD4 and CD8 antigens. The data showed that lymphocytes with a low density expression of CD8 and no expression of CD4 were enriched for LAK effector cells, whereas CD4+ and CD8- had less activity than unsorted cells. Lymphocytes with a high density expression of CD8 had activity similar to unsorted cells. We also assessed the contribution of Leu-7 (HNK-1) granular lymphocytes to LAK effector function. After culture with IL 2, lymphocytes were depleted of Leu-7+ cells by antibody and complement treatment and then were sorted into CD5+ and CD5- fractions. The cytotoxic activity of Leu-7-CD5+ cells was a mean 5% +/- 5 vs a mean 14% +/- 8 for the total CD5+ population (20:1 E:T ratio). The activity of Leu-7- CD5- was slightly less than the total CD5- fraction (21% +/- 9 vs 28% +/- 14, 10:1 E:T ratio). In conclusion, LAK effector function was highest in non-T cell (CD5- CD16+) populations and some activity was also present in T cell populations (CD5+ and predominantly Leu-7+).
    [Abstract] [Full Text] [Related] [New Search]