These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A Modified Traveling Wave Ion Mobility Mass Spectrometer as a Versatile Platform for Gas-Phase Ion-Molecule Reactions.
    Author: Czar MF, Marchand A, Zenobi R.
    Journal: Anal Chem; 2019 May 21; 91(10):6624-6631. PubMed ID: 31008583.
    Abstract:
    Taken individually, chemical labeling and mass spectrometry are two well-established tools for the structural characterization of biomolecular complexes. A way to combine their respective advantages is to perform gas-phase ion-molecule reactions (IMRs) inside the mass spectrometer. This is, however, not so well developed because of the limited range of usable chemicals and the lack of commercially available IMR devices. Here, we modified a traveling wave ion mobility mass spectrometer to enable IMRs in the trapping region of the instrument. Only one minor hardware modification is needed to allow vapors of a variety of liquid reagents to be leaked into the trap traveling wave ion guide of the instrument. A diverse set of IMRs can then readily be performed without any loss in instrument performance. We demonstrate the advantages of implementing IMR capabilities in general, and to this quadrupole-ion mobility-time-of-flight (Q-IM-TOF) mass spectrometer in particular, by exploiting the full functionality of the instrument, including mass selection, ion mobility separation, and post-mobility fragmentation. The potential to carry out gas-phase IMR kinetics experiments is also illustrated. We demonstrate the versatility of the setup using gas-phase IMRs of established utility for biological mass spectrometry, including hydrogen-deuterium exchange, ion-molecule proton transfer reactions, and covalent modification of DNA anions using trimethylsilyl chloride.
    [Abstract] [Full Text] [Related] [New Search]