These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Porous Aromatic Framework Modified Electrospun Fiber Membrane as a Highly Efficient and Reusable Adsorbent for Pharmaceuticals and Personal Care Products Removal. Author: Zhao R, Ma T, Li S, Tian Y, Zhu G. Journal: ACS Appl Mater Interfaces; 2019 May 08; 11(18):16662-16673. PubMed ID: 31009202. Abstract: Water contamination by emerging organic pollutants, such as pharmaceuticals and personal care products (PPCPs), is becoming more and more serious. Porous aromatic frameworks (PAFs) are considered as promising adsorbents to remove the PPCPs. To overcome the limitation of PAFs in their powder forms for large-scale applications, herein, we proposed a strategy to covalently anchor PAFs onto electrospun polymer fiber membranes. Polyaniline (PANI) played the role of aromatic seed layer, which was coated on the electrospun polyacrylonitrile (PAN) fiber membrane first. Then, PAF-45 modification was in situ synthesized in the presence of the PANI-coated electrospun PAN fiber membrane. This study could make the PAF-based materials be handled more easily and improve the surface area of electrospun fiber membrane. The obtained composite adsorbent (PAF-45-PP FM) was applied for the adsorption of three PPCPs: ibuprofen (IBPF), chloroxylenol (CLXN), and N, N-diethyl-meta-toluamide (DEET), which exhibited high adsorption capacity and good recycling ability. According to the Langmuir model, the maximum adsorption capacities of PAF-45-PP FM toward IBPF, CLXN and DEET were 613.50, 429.18, and 384.61 mg/g, respectively. In addition, after ten adsorption-desorption cycles, the adsorption capacities toward the three PPCPs decreased slightly. Through an adsorption comparison test, the adsorption capacity of PAF-45-PP FM almost attributed to the loading PAF-45. The adsorption mechanism analysis illustrated that there were pore capture, hydrophobic interaction and π-π interaction between PPCPs and PAF-45-PP FM. Therefore, the PAF-45-PP FM can be potential adsorbents to purify water contaminated with PPCPs.[Abstract] [Full Text] [Related] [New Search]