These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nonlinearity and amplification in cochlear responses to single and multi-tone stimuli. Author: Fallah E, Strimbu CE, Olson ES. Journal: Hear Res; 2019 Jun; 377():271-281. PubMed ID: 31015062. Abstract: Mechanical displacements of the basilar membrane (BM) and the electrophysiological responses of the auditory outer hair cells (OHCs) are key components of the frequency tuning and cochlear amplification in the mammalian cochlea. In the work presented here, we measured the responses of (1) the extracellular voltage generated by OHCs (VOHC) and (2) displacements within the organ of Corti complex (OCC) to a multi-tone stimulus, and to single tones. Using optical coherence tomography (OCT), we were able to measure displacements of different layers in the OCC simultaneously, in the base of the gerbil cochlea. We explored the effect of the two types of sound stimuli to the nonlinear behavior of voltage and displacement in two frequency regions: a frequency region below the BM nonlinearity (sub-BF region: f < ∼0.7 BF), and in the best frequency (BF) region. In the sub-BF region, BM motion (XBM) had linear growth for both stimulus types, and the motion in the OHC region (XOHC) was mildly nonlinear for single tones, and relatively strongly nonlinear for multi-tones. Sub-BF, the nonlinear character of VOHC was similar to that of XOHC. In the BF region XBM, VOHC and XOHC all possessed the now-classic nonlinearity of the BF peak. Coupling these observations with previous findings on phasing between OHC force and traveling wave motions, we propose the following framework for cochlear nonlinearity: The BF-region nonlinearity is an amplifying nonlinearity, in which OHC forces input power into the traveling wave, allowing it to travel further apical to the region where it peaks. The sub-BF nonlinearity is a non-amplifying nonlinearity; it represents OHC electromotility, and saturates due to OHC current saturation, but the OHC forces do not possess the proper phasing to feed power into the traveling wave.[Abstract] [Full Text] [Related] [New Search]