These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Testing plasma subtilisin inhibitory activity as a selective marker for dermo resistance in eastern oysters. Author: La Peyre JF, Casas SM, Richards M, Xu W, Xue Q. Journal: Dis Aquat Organ; 2019 Feb 28; 133(2):127-139. PubMed ID: 31019137. Abstract: Recent findings have suggested that eastern oyster plasma possesses inhibitors of the protease subtilisin, which play a role in the host defense against Perkinsus marinus, a protist parasite causing dermo. A study was conducted to determine whether plasma subtilisin inhibitory activity (PSIA) could be used as a selective marker in breeding programs for dermo resistance. Eastern oysters Crassostrea virginica from 2 wild Louisiana populations shown to differ in dermo resistance were collected and their PSIA was measured. Three groups of oysters were established to spawn from each population. One group was composed of randomly sampled oysters (i.e. unselected) and the other 2 groups were composed of oysters with the highest or lowest PSIA. After spawning, progenies were deployed in October 2014 in a dermo endemic area and sampled quarterly for 2 yr to measure their mortality, growth, P. marinus infection intensity, condition index, PSIA, and the gene expression of 3 subtilisin inhibitors (cvSI-1, cvSI-2, and cvSI-3). Oyster cumulative mortalities of the progenies of all groups increased both years from April to October, concomitant with increasing P. marinus infection intensities. Mortalities and P. marinus infection intensities differed markedly between the 2 populations, but differences between the unselected and selected groups of each population were limited. Measurements of PSIA and cvSI-1, cvSI-2, and cvSI-3 gene expressions between the progenies of all groups showed few differences. CvSI-1 gene expression in surviving oysters of the most susceptible population was increased at the end of the study, adding additional support to the potential role of cvSI-1 defense against P. marinus.[Abstract] [Full Text] [Related] [New Search]