These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Adsorption, recovery, and regeneration of Cd by magnetic phosphate nanoparticles.
    Author: Li Y, Yang Z, Chen Y, Huang L.
    Journal: Environ Sci Pollut Res Int; 2019 Jun; 26(17):17321-17332. PubMed ID: 31020528.
    Abstract:
    Adsorption plays an important role in removing cadmium (Cd2+) from water, and magnetic adsorbents are increasingly being used due to their ease of separation and recovery. Magnetic Fe3O4-coated hydroxyapatite (HAP) nanoparticles (nHAP-Fe3O4) were developed by co-precipitation and then used for the removal of Cd2+ from water. The properties of these nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and magnetization curves. Experiments were conducted to investigate the effects of adsorption and mechanisms. Results illustrated that kinetic data were well fitted by a pseudo-second-order model. The adsorption capacity of nHAP-Fe3O4 was 62.14 mg/g. The mechanisms for the adsorption of Cd2+ on nHAP-Fe3O4 included rapid surface adsorption, intraparticle diffusion, and internal particle bonding, with the ion exchange with Ca2+ and chemical complexation being the most dominant. The regeneration efficiency and recovery rate of nHAP-Fe3O4 eluted by EDTA-Na2 after the fifth cycle were 63.04% and 40.2%, respectively. Results revealed that the feasibility of nHAP-Fe3O4 as an adsorbent of Cd2+ and its environmental friendliness make it an ideal focus for future research.
    [Abstract] [Full Text] [Related] [New Search]