These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of arachidonic acid metabolism in resident and BCG-activated alveolar macrophages: role of lyso(bis)phosphatidic acid.
    Author: Cochran FR, Roddick VL, Connor JR, Thornburg JT, Waite M.
    Journal: J Immunol; 1987 Mar 15; 138(6):1877-83. PubMed ID: 3102603.
    Abstract:
    To dissect mechanisms of arachidonic acid (20:4) metabolism in pulmonary alveolar macrophages (PAM), two distinct cell populations were investigated, resident and BCG-activated rabbit alveolar macrophages. After purified resident PAM were labeled overnight with [3H]20:4, radioactivity was localized primarily within lyso(bis)phosphatidic acid (L(bis)PA) (13.1% +/- 1.7), phosphatidylethanolamine (PE) (22.8% +/- 0.8), and phosphatidylcholine (PC) (26.7% +/- 1.7), with lesser amounts recovered in phosphatidylserine plus phosphatidylinositol (PS/PI) (9.2 +/- 0.8%). By contrast, analysis of the phospholipid classes from prelabeled BCG-activated PAM revealed that the amount of [3H]20:4 contained in L(bis)PA was profoundly decreased (4.7% +/- 0.4), p less than 0.003), whereas [3H]20:4 contained within other BCG phospholipids remained unchanged. Moreover, L(bis)PA, which composed 18.6% +/- 1.2 of the total phospholipid phosphorus of resident PAM, was reduced to 4.1% +/- 0.1 in BCG-activated macrophages (p less than 0.01). Phospholipase A2 from snake venom or from pancreas failed to release 20:4 from L(bis)PA, and lipase (phospholipase A1) from Rhizopus delmar liberated no more than one-third of this arachidonate. These results suggest that much of the arachidonate is not mobilized by classical phospholipases A1 and A2. When [3H]20:4-labeled PAM were stimulated with 1 microM 12-O-tetradecanoyl-phorbol-13-acetate (TPA), a loss of [3H]20:4 was observed from L(bis)PA, PE, PC, and PS/PI, with a concomitant increase in the synthesis of Hete and leukotriene C4. BCG-activated PAM exposed to either TPA or 3.8 microM calcium ionophore A23187 liberated [3H]20:4 solely from PE and PC, with diminished 20:4 oxidative metabolism. Analysis of the specific radioactivities of phospholipids obtained from resident PAM prelabeled with [3H]20:4 or [32P]i demonstrated that the specific activity of [32P]L(bis)PA was negligible, whereas that of [3H]20:4 was quite high. In addition, L(bis)PA deacylation induced by TPA in resident PAM was always accompanied by a corresponding loss of [3H]20:4 from phosphatidylinositol (PI), suggesting that metabolism of this novel phospholipid proceeded by a deacylation-reacylation reaction rather than by de novo synthesis. BCG-activated PAM, which exhibited depressed eicosanoid formation, consistently failed to deacylate [3H]20:4 from L(bis)PA or PI. These studies demonstrate that, unlike 20:4 derived from PE and PC by BCG-activated PAM, L(bis)PA may indeed provide a novel source of 20:4 that is tightly coupled to the lipoxygenase pathway.
    [Abstract] [Full Text] [Related] [New Search]