These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Different biological effects of PM2.5 from coal combustion, gasoline exhaust and urban ambient air relate to the PAH/metal compositions. Author: Cui X, Zhou T, Shen Y, Rong Y, Zhang Z, Liu Y, Xiao L, Zhou Y, Li W, Chen W. Journal: Environ Toxicol Pharmacol; 2019 Jul; 69():120-128. PubMed ID: 31026736. Abstract: Few studies have compared the biological effects of PM2.5 from coal combustion, gasoline exhaust and urban ambient air, and the roles of polycyclic aromatic hydrocarbons (PAHs) and metals playing in the process remain unclear. In this study, PM2.5 samples from coal combustion, gasoline exhaust and urban ambient air were analyzed for 16 PAHs and 23 metals. Cytotoxic and inflammatory effects of different PM2.5 were evaluated on differentiated THP-1 and A549 cells, respectively. We found that the coal combustion PM2.5 samples induced stronger cytotoxic and inflammatory effects (p < 0.05). Pearson's correlation and principal component analysis showed that the PAHs containing four or more benzenoid rings and specific metals of cadmium, thallium, zinc and lead were positively related to the biological effects. Our results suggested that coal combustion PM2.5 might be a more serious health hazard. Specific PAHs and metals might be account for the PM2.5 induced biological effects.[Abstract] [Full Text] [Related] [New Search]