These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of inheritance and preliminary biochemical mechanisms of spirotetramat resistance in Phenacoccus solenopsis Tinsley: An economic pest from Pakistan.
    Author: Ejaz M, Ullah S, Shad SA, Abbas N, Binyameen M.
    Journal: Pestic Biochem Physiol; 2019 May; 156():29-35. PubMed ID: 31027578.
    Abstract:
    Phenacoccus solenopsis is an economically important insect pest of different agronomic and horticultural field crops. In Pakistan, the cotton crop was severely attacked by P. solenopsis during 2007 and since then a varied group of insecticides are used by farmers to manage this pest. As a result, insecticide resistance has become a barrier in control of P. solenopsis. The current study was designed to explore the basics of genetics, realized heritability and possible genetic mechanisms of resistance against spirotetramat in P. solenopsis. Before selection, the wild population (Wild-Pop) showed 5.97-fold resistance when compared with lab-reared susceptible strain (Susceptible Lab-Pop). The P. solenopsis was selected with spirotetramat to 21 generations, called Spiro-SEL Pop, which showed 463.21-fold resistance as compared with the Susceptible Lab-Pop. The values of LC50 for F1 (Spiro-SEL Pop ♂ × Susceptible Lab-Pop ♀) and F1 (Spiro-SEL Pop ♀ × Susceptible Lab-Pop ♂) populations were statistically similar and values of dominance level were 0.42 and 0.54, respectively. Reciprocal crosses between Susceptible Lab-Pop and Spiro-SEL Pop showed that resistance was of autosomal in nature with incomplete dominant traits. According to the fit test, monogenic model estimation of the number of genes, which are responsible for the development of spirotetramat resistance in a population of P. solenopsis, showed that multiple genes are involved in controlling the resistance levels in tested strains of P. solenopsis. The value of heritability for resistance against spirotetramat was 0.13 in P. solenopsis. Our results suggested the presence of a metabolic-based resistance mechanism associated with the monooxygenases in P. solenopsis, while testing the synergism mechanism. These results will provide the baseline to design an effective control strategy to manage P. solenopsis in the field.
    [Abstract] [Full Text] [Related] [New Search]