These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A broad filter between call frequency and peripheral auditory sensitivity in northern grasshopper mice (Onychomys leucogaster). Author: Green DM, Scolman T, Guthrie OW, Pasch B. Journal: J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Aug; 205(4):481-489. PubMed ID: 31030219. Abstract: Acoustic communication is a fundamental component of mate and competitor recognition in a variety of taxa and requires animals to detect and differentiate among acoustic stimuli (Bradbury and Vehrencamp in Principles of animal communication, 2nd edn., Sinauer Associates, Sunderland, 2011). The matched filter hypothesis predicts a correspondence between peripheral auditory tuning of receivers and properties of species-specific acoustic signals, but few studies have assessed this relationship in rodents. We recorded vocalizations and measured auditory brainstem responses (ABRs) in northern grasshopper mice (Onychomys leucogaster), a species that produces long-distance calls to advertise their presence to rivals and potential mates. ABR data indicate the highest sensitivity (28.33 ± 9.07 dB SPL re: 20 μPa) at 10 kHz, roughly corresponding to the fundamental frequency (11.6 ± 0.63 kHz) of long-distance calls produced by conspecifics. However, the frequency range of peripheral auditory sensitivity was broad (8-24 kHz), indicating the potential to detect both the harmonics of conspecific calls and vocalizations of sympatric heterospecifics. Our findings provide support for the matched filter hypothesis extended to include other ecologically relevant stimuli. Our study contributes important baseline information about the sensory ecology of a unique rodent to the study of sound perception.[Abstract] [Full Text] [Related] [New Search]