These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Trade-off between fracture resistance and translucency of zirconia and lithium-disilicate glass ceramics for monolithic restorations. Author: Zhang F, Reveron H, Spies BC, Van Meerbeek B, Chevalier J. Journal: Acta Biomater; 2019 Jun; 91():24-34. PubMed ID: 31034947. Abstract: High strength and translucency are generally not coincident in one restorative material and there is still a continuous development for a better balance between these two properties. Zirconia and lithium-disilicate glass-ceramics are currently the most popular alternatives for monolithic restorations. In this work, the mechanical properties and more important, the slow crack growth (SCG) resistance, which rules long-term durability, were thoroughly studied for three zirconia ceramics stabilized by 3, 4 and 5 mol% yttria in comparison to lithium-disilicate glass-ceramic. Translucency versus strength maps revealed that the more translucent zirconia compositions (i.e. with higher yttria contents) fill the gap between the standard 3 mol% yttria stabilized zirconia (3Y-TZP) and lithium-disilicate. Moreover, increasing yttria content did not always result in lower strength, as values for 3 mol% and 4 mol% yttria were the same. Independent on the yttria contents, all zirconia showed similar relative susceptibility to SCG under static and cyclic conditions and were significantly more SCG-resistant than lithium-disilicate glass ceramic. A concern with higher yttria contents (5 and 4 mol%) however could lie in the higher sensitivity to defects, resulting in a larger scatter in strength. STATEMENT OF SIGNIFICANCE: In addition to the common investigations on the generally reported strength, toughness and translucency, V-KI diagrams (crack velocity versus stress-intensity factor) from fast fracture to threshold for three newly developed zirconia were directly measured by double torsion methods under static and cyclic loading conditions. The crack-growth mechanisms were analyzed in depth. Results were compared with another popular dental ceramic, namely lithium-disilicate glass-ceramic, revealing the pros and cons of polycrystalline and glass-ceramics in terms of long-term durability. This is the first time that V-KI curves are compared for the major ceramic and glass-ceramic used for dental restorations. Strength versus translucency maps for different CAD/CAM dental restorative materials were described, showing the current indication range for zirconia ceramics.[Abstract] [Full Text] [Related] [New Search]