These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: NHE8 attenuates Ca2+ influx into NRK cells and the proximal tubule epithelium.
    Author: Wiebe SA, Plain A, Pan W, O'Neill D, Braam B, Alexander RT.
    Journal: Am J Physiol Renal Physiol; 2019 Aug 01; 317(2):F240-F253. PubMed ID: 31042050.
    Abstract:
    To garner insights into the renal regulation of Ca2+ homeostasis, we performed an mRNA microarray on kidneys from mice treated with the Ca2+-sensing receptor (CaSR) agonist cinacalcet. This revealed decreased gene expression of Na+/H+ exchanger isoform 8 (NHE8) in response to CaSR activation. These results were confirmed by quantitative real-time PCR. Moreover, administration of vitamin D also decreased NHE8 mRNA expression. In contrast, renal NHE8 protein expression from the same samples was increased. To examine the role of NHE8 in transmembrane Ca2+ fluxes, we used the normal rat kidney (NRK) cell line. Cell surface biotinylation and confocal immunofluorescence microscopy demonstrated NHE8 apical expression. Functional experiments found 5-(N-ethyl-N-isopropyl)amiloride (EIPA)-inhibitable NHE activity in NRK cells at concentrations minimally attenuating NHE1 activity in AP-1 cells. To determine how NHE8 might regulate Ca2+ balance, we measured changes in intracellular Ca2+ uptake by live cell Ca2+ imaging with the fluorophore Fura-2 AM. Inhibition of NHE8 with EIPA or by removing extracellular Na+-enhanced Ca2+ influx into NRK cells. Ca2+ influx was mediated by a voltage-dependent Ca2+ channel rather than directly via NHE8. NRK cells express Cav1.3 and display verapamil-sensitive Ca2+ influx and NHE8 inhibition-augmented Ca2+ influx via a voltage-dependent Ca2+ channel. Finally, proximal tubules perused ex vivo demonstrated increased Ca2+ influx in the presence of luminal EIPA at a concentration that would inhibit NHE8. The results of the present study are consistent with NHE8 regulating Ca2+ uptake into the proximal tubule epithelium.
    [Abstract] [Full Text] [Related] [New Search]